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O. Introduction 

Recently, there have been substantial break- 
throughs in the analysis of cross -classified fre- 
quency counts. One of the major algorithms for 
this type of analysis is variously known as iter- 
ative proportional fitting (IPF), raking, or the 
Deming and Stephan algorithm. The original ver- 
sion of the algorithm was discussed by Deming 
[1943]. Subsequently, there have been a number 
of papers and books on the techniques which uti- 
lize the algorithm (e.g. Bishop et al. [1975]). 
The aspect of the algorithm to be discussed in 
this paper is its application to complex survey 
data. It is assumed that such a random sample 
has a known probability structure. 

Social and life scientists have been apply- 
ing the algorithm to complex survey data for sev- 
eral years. Two examples are papers by Frederick 
J. Scheurin [1973] and Robert M. Hauser et al. 
[1975]. Scheurin states, 

"...when the sample size is large relative 
to the number of cells then substantively 
insignificant effects can become statisti- 
cally significant. It also turns out to be 
quite difficult to make even approximate 
significance statements when data come from 
complex multistage samples..." (p.164). 

This was stated in the context of a discussion 
concerning the use of log -linear models for pur- 
pose of generating hypotheses from a Current Pop- 
ulation Survey data set. The focus was on pov- 
erty statistics. In the second example, Hauser 
et adjusted the 'Occupational Changes in a 
Generation" data set downward by factor of 0.62 
to reflect the efficiency of the survey design 
relative to simple random sampling (Hauser et al. 
[1975]: 282). However, they point out there 
should be additional adjustments for non -sampling 
error and simultaneous inference. Thus, the ap- 
plication of log -linear models to survey data re- 
quires dealing with two issues: 

i. the relatively large size of the samples; 
ii. the complexity of the survey design. 

It is true that the size of the sample of- 
ten leads to the statistical significance of 
largely uninterpretable interaction effects. How- 
ever, this is not necessarily the case. For ex- 
ample, Freeman et al. [1977] discusses the fit- 
ting of relatively simple models to physician 
visit data from the National Health Interview Sur- 
vey. This was a survey of about 40,000 house- 
holds or 120,000 individuals. Nbreover, the sur- 
vey design was indirectly incorporated into that 
study. It is this issue which must be considered 
prior to deciding that the formal hypothesis test- 
ing as unnecessary because of the sample size. 
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The survey design is frequently too complex 
for the use of direct estimates of variance. How- 
ever, for linear sample statistics techniques such 
as jack - knifing and pseudo -replication may be used 
to generate valid estimated covariance matrices. 
For "raked tables" the sample estimates are gen- 
erally non -linear. Causey [1973] pointed out that 
Taylor series estimates are feasible for such ta- 
bles. The tables are raked so as to minimize the 
"discrimination information." This is discussed 
for the simple survey situation in a number of 
places including Gokhale and Kullback [1976]. 

This paper shows that the problem is in fact 
a direct application of the "Functional Asymptotic 
Regression Methodology," Koch et al. [1975]. The 
key assumption is that the central covariance ma- 
trices are estimated either directly or indirectly 
by some method which accounts for the survey de- 
sign. Previously, Koch et al. examined the prob- 
lem where it could be assumed that the data were 
based on independent simple random samples. As 
noted in Freeman et al. [1977] the violation of 
this assumption in complex surveys can result is 
substantial reductions in the power of the test 
statistics. The discussion is in three parts. 
First, a general survey notation is presented. 
The raking model and its covariance matrix esti- 
mates are discussed. Lastly, an example is given. 

1. Notation 

Consider a set of d attributes. Let 
jg = 1,2,...,Lg index the response categories for 

the g -th attribute where g= 1,2,...,d. Let 
= denote the vector response pro- 

file. Let 

1 if element Q from popula- 
tion under study is class- 
ified as having response (1.1) 
profile j 

0 if otherwise 

where = 1,2 N with N being the total number 
of elements in the population. Let 

if element from popu- 
lation is in sample 

if otherwise 

(1.2) 

The {U characterize the sample design including 

the nature of any clustering, stratification, 
and /or multistage selection. Let E {UQ} de- 

note probability of selection for element from 



N 
population. Let n = denote the sample size. 

=1 

multivariate relationships among the d 
attributes can be summarized in terms of the d- 
dimensional contingency table of weighted fre- 
uncies 

N. 
= 

N. 
. . = 1 

UQN. . 

. 

(1.3) 
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In this framework, let p. denote the 

corresponding relative frequency or weighted ob- 
served sample proportion. The are unbiased 

estimators for the parameters 

= 1 

(1.4) 

i N 

Njj 1 

which reflect the average distribution of the re- 
spective response profiles in the population. 

Let N, p, and denote the vectors 

N11...1 Pll...1 

N = 

= 

L1L2...Ld 

PL1L2. . .Ld 

the target population has the "as- 
sociation structure" as the sampled 
population. 

Examples of such target populations include: 
a. various local (county or state) sub- 

divisions of a nationally sampled pop- 
ulation 

b. other local, national, or international 
target populations which may partially 

overlap a sampled local population. 

More specifically, let denote the parait- 

eter vector which characterizes the distribution 
of the response profiles for the sampled popula- 
tion, and let p denote its corresponding estima- 

tor. Let for the 

target population. Let denote a matrix of 

efficients whose columns generate the pertinent 
marginal distributions comprising the known "al- 
location structure," and let 

§T 
denote their cor- 

responding values. Thus, assumption (i) 

means that satisfies 

T (2.1) 

where without loss of generality, AT will be re- 

garded as having full rank by deletion of unnec- 
essary The matrix also reflects the 

fact that the elements of con- 
straint 

l' 1 (2.2) 

where l' is a vector of l's. Given the form 

(1.5) ulation (2.1) of "allocation structure," attention 
will be directed at the asymptotic covariance 
structure of the estimator for the parameter vec- 
tor which is obtained by applying assumption 

(ii) with respect to an appropriate definition of 
"association structure." 

2. Methods of Adjustment 

A sample from a specific population may be 
regarded as yielding two types of information: 

A. Estimators for marginal distributions 
of certain subsets of attributes. This 
type of information is called "allocation 
structure." 

B. Estimators for higher order measures of 
association and/or interaction which 

reflect the relationships across the 
marginal subsets in (A). This type of 
information is called "association 
structure." 

With these considerations in mind, the ob- 
served sample can be adjusted to provide estima- 
tors for other target populations of interest if 
the following assumptions hold: 

i. the target population has "allo- 

cation structure" via census or other 
sample survey data 
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2.1. Adjustment with respect to 
ation structure" 

Let K denote an ortho- complement matrix to 

AT. Then assumption (ii) means that satisfies 

= K'{log (,r)} (2.3) 

where, in this context, "association structure" 
is in terms of log - linear contrast func- 
tions. If p denotes the sample estimator of de- 

fined by (1.5), then (2.1) and (2.3) imply that 
the marginal adjustment (raking) estimator of 

is characterized by the equations 

T T (2.4) 



K'{log(nm)} = K'{log(p)}. (2.5) Thus, for this special case, the covariance matrix 
(2.9) may be simplified to 

(.r) =K [K' D 1K1 -1K' 
[K' -1K' /n 

Within this framework, the estimator 

determined (provided both assumptions (i) and (ii) 
are true so that a solution to (2.1) and (2.3) 

almost always exists if the sample size n is suf- 
ficiently large) by applying the Deming- Stephan 
Iterative Proportional Fitting (IPF) algorithm to 
adjust an initial estimator which satisfies (2.5) 

to successively with each of the respec- 
tive marginal configurations which comprise the 
"allocation structure" equations (2.4) since such 
operations preserve the agreement of successive 
solutions with the "association structure" eaua- 

(2.5). 

The asymptotic covariance matrix of the es- 
timators is Obtained by the ,ell -known d -method 

(based on the first order Taylor series) with the 
required first derivative matrix being determined 
by implicit techniques. In this regard, if both 
sides of (2.4) - (2.5) are differentiated with 
respect to p, it follows that 

do 
(2.6) 

where denotes a diagonal matrix with the ele- 

ments of y on the diagonal. Since 

--1 
D 

the equations (2.6) may be solved to yield 

do p=1r 

(2.11) 

if the target population is identical 
to the sampled population (which is the case when 
the "allocation structure" of the population under 
study is known a priori as is the case with sam- 
pies from registration systems like licensed driv- 
ers), then n are identical so that (2.11) 

may be further simplified to 

(n) = K' /n (2:12) 

An analogous simplification could also be applied 
to the more general result (2.9) for this situa- 
tion. 

Reasonable estimators for the covariance 
matrix (n) may be constructed by replacing 

-T 

by an appropriate consistent estimator 

which is obtained by either direct or replication 
methods and replacing and by p and re- 

spectively. The resulting estimated covariance 
matrix may be used in conjunction with to 

`-T 

test various hypotheses by weighted least squares 
methods. In this regard, an appropriate test 
statistic for the hypothesis 

H0: (2.13) 

(2.7) where C is assumed to be a full rank matrix, is 

the Wald statistic 

= K [K' D1Kl 
-1K' D1 (2.8) 

Thus, if denotes the covariance matrix of 

the estimator p, then the asymptotic covariance 

matrix for given 

VT (7) =K D1Kl D (r) D,1K [K' 

(2.9) 

For univariate problems, a similar result is 
found in Causey (1972). 

If the sample design is simple random sam- 
pling (with replacement), then 

V(n) = {D 
- 

n 
(2.10) 
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(2.14) 

which has approximately a chi -square distribution 
with D.F. = Rank(C) in large samples. 

2.2. Adjustment with respect to reduced "associ- 
ation structure" 

For certain situations, it may be possible 
to assume that the vector is characterized by a 
log -linear model 

n(a) = 8) / {1'[exp(X }, (2.15) 

where X is a known full rank design matrix whose 

columns represent a basis for the main effects 
and interactions which constitute the model and 

is an unknown parameter vector. the model 
(2.15) holds, a reasonable estimator for may be 

obtained by solving the equations 



(2.16) 

If the matrix X has an hierarchical structure 

which includes with any given interaction vari- 
able all other interaction variables of the same 
type and all corresponding lower order interac- 
tions, the equations (2.16) may be solved by ap- 
plying the Deming - Stephan IPF algorithm to ad- 
just an initial estimator 

= 
d 

g=1 

{1} (2.17) 

which trivially satisfies the model (2.15) bacon- 
form successively with each of the respective 
marginal configurations which are associated with 
the equations (2.16). 

The asymptotic covariance matrix of the es- 
timator of is obtained by the method with 

the first derivative matrix being determined by 
implicit techniques. In this regard, if both 
sides of (2.16) are differentiated with respect 
to p, it follows that 

X' 
d 

dp 

exp(X ß) 

l'{exp(X ß)} 

= X' 

dß 
X' - = X' 

(2.18) 

= 0) /1'[eXP(X 8)] }. The equations 

(2.18) may be solved to yield 

= {X'[D - n']X}-1 X'. (2.19) 

Thus, the asymptotic covariance matrix (jr) for 

is given by 

(2.20) 

If the sample design is simple random sam- 
pling, then (2.10) may be used to simplify (2.20) 
to 

= (2.21) 
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Moreover, it can be noted that represents the 

maximum likelihood estimator of for this situ- 
ation. 

A reasonable estimator for Or) may be con- 

structed by replacing by an appropriate es- 

timator V as described previously and replacing 

n by n. The resulting estimated covariance 

matrix together with provide a framework for 

further analysis by weighted least squares methods. 

The results (2.15) - (2.21) may be applied 
to the marginal adjustment (raking) situation by 
noting that (2.15) implies that the "association 
structure" equations (2.3) may be written as 

K' 

X' 
{ loge ) = 

K' 
{log_ (Tr) } = 

(2.22) 

where is an ortho- matrix to [2,X] 

and K is an ortho- complement matrix to 

By proceeding as described in (2.4) - (2.9), it 

can be verified that the asymptotic covariance 
matrix for under the model (2.15) is given by 

where 

V (B) = 

K'Dn1K 

X'Dn1K 

(2.23) 

K'X 

Further extensions of these results may be under- 
taken by allowing 

ET 
to be replaced by an esti- 

mator ET which is either independent or corre- 

lated with p. 

3. Example 

The data in Table 1 have been used by Ireland 

and Kullback [1968; pp. 707 -713] to illustrate 

the application of for the adjustment of a 
contingency table to a known marginal "allocation 
structure." They are being reanalyzed here to 
indicate the reduction in variance which is 
achieved by using such "raking" procedures to es- 
timate the cell probabilities n. 

These data originally come from a study 
undertaken by Roberts et al. [1939; Biometrika, 

pp. 56 -66]. experimental design involves 

n = 3734 mice from a single population, each of 



which is classified with respect to the presence 
or absence of the attributes A, B, and D. The 
"allocation structure" of interest is defined in 
terms of the hypothesis that the probability of 
the presence (or absence) of each separate at- 
tribute is (1/2). Thus, with respect to the 
matrix notation in (2.1), it follows that 

11111111 
11110000 
1 1 0 0 1 1 0 0 

10101010 

1.0 
0.5 

0.5 
0.5 

(3.1) 

The "association structure" which is to be pre- 
served in the sense of (2.3) corresponds to the 
log- linear functions 

= K' [logOr)] (3.2) 

where 

1 1 -1 -1 -1 -1 1 1 

1 -1 1 -1 -1 1 -1 1 
K' 1 -1 -1 1 1 -1 -1 1 (3.3) 

1 -1 -1 1 -1 1 1 -1 

which pertain to the first and second order in- 
teractions among the three attributes. 

By using IPF to adjust the observed fre- 
quencies in Table 1 to the "allocation structure" 
specified by (3.1), Ireland and Kullback obtain 
the "raked" predicted cell frequencies shown in 
Table 2. The corresponding predicted proportions 

are also given there together with their re- 

spective standard errors based on (2.12). Thus, 
by comparing these results with their counter- 
parts in Table 1, it can be noted that the pre- 
dicted proportions are very similar to the 

original observed proportions, but have substan- 
tially smaller estimated standard errors. 

Finally, since the "allocation structure" 
(3.1) corresponds to an hypothesis rather than a 
priori known constraints, Ireland and Kullback 
indicate that its acceptability for these data is 
supported by a nonsignificant (a .25) 
Discrimination Information Chi- Square Statistic 
for goodness of fit p) 3.42 with D.F. 
= 3. 
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1. TABULATION ACCORDING TO ATTRIBUTES A, B, AND D . 
Response profile for attributes A vs B vs D 

Attribute A Y Y Y Y N. N N N 
Attribute Y N N Y Y N N 
Attribute D Y N Y N Y N Y N 

Overall group 
observed cell 

frequency 
475 460 462 509 467 440, 494 427 

Observed pro- 
portions 

Estimated s.e. 0.0055 0.0054 0.0054 0.0056 0.0054 0.0053 0.0055 0.0052 

0.1272 0.1232 0.1237 0.1363 0.1251 0.1178 0.1323 0.1144 

Y denotes presence of the attribute; N denotes absence. 

2. "RAKED" PREDICTED CONTINGENCY TABLE FOR ATTRIBUTES A, B, AND D 

Response profile for attributes A vs B vs D 

Attribute A Y Y Y Y N N N N 

Attribute Y Y N N Y Y N N 

Attribute D Y N Y N Y N Y N 

Overall group 
"raked" pre- 
dicted cell 
frequency 

463.3 464.5 438.7 500.5 475.4 463.8 489.6 438.2 

Predicted 
Proportions 

Estimated s.e. 

0.1241 

0.0041 

0.1244 

0.0041 

0.1175 

0.0041 

0.1340 

0.0041 

0.1273 

0.0041 

0.1242 

0.0041 

0.1311 

0.0041 

0.1174 

0.0041 

Y denotes presence of the attribute; N denotes absence. 
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